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Abstract 

Background: Gait impairment is a common complication of multiple sclerosis (MS). Gait limitations such as limited 
hip flexion, foot drop, and knee hyperextension often require external devices like crutches, canes, and orthoses. The 
effects of mobility-assistive technologies (MATs) prescribed to people with MS are not well understood, and current 
devices do not cater to the specific needs of these individuals. To address this, a passive unilateral hip flexion-assisting 
orthosis (HFO) was developed that uses resistance bands spanning the hip joint to redirect energy in the gait cycle. 
The purpose of this study was to investigate the short-term effects of the HFO on gait mechanics and muscle activa-
tion for people with and without MS. We hypothesized that (1) hip flexion would increase in the limb wearing the 
device, and (2) that muscle activity would increase in hip extensors, and decrease in hip flexors and plantar flexors.

Methods: Five healthy subjects and five subjects with MS walked for minute-long sessions with the device using 
three different levels of band stiffness. We analyzed peak hip flexion and extension angles, lower limb joint work, and 
muscle activity in eight muscles on the lower limbs and trunk. Single-subjects analysis was used due to inter-subject 
variability.

Results: For subjects with MS, the HFO caused an increase in peak hip flexion angle and a decrease in peak hip 
extension angle, confirming our first hypothesis. Healthy subjects showed less pronounced kinematic changes 
when using the device. Power generated at the hip was increased in most subjects while using the HFO. The second 
hypothesis was not confirmed, as muscle activity showed inconsistent results, however several subjects demon-
strated increased hip extensor and trunk muscle activity with the HFO.

Conclusions: This exploratory study showed that the HFO was well-tolerated by healthy subjects and subjects with 
MS, and that it promoted more normative kinematics at the hip for those with MS. Future studies with longer expo-
sure to the HFO and personalized assistance parameters are needed to understand the efficacy of the HFO for mobil-
ity assistance and rehabilitation for people with MS.
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Introduction
Multiple sclerosis (MS) is chronic neurological disor-
der in which inflammation leads to the demyelination 
of nerve fibers and the eventual breakdown of neu-
rons in the central nervous system. This damage causes 
a long-term accumulation of disability, resulting from 
sensory and motor impairments [1]. In 2015, over 2 mil-
lion cases were reported globally [2], and an estimated 
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75% of people with MS experience mobility impairments 
over the course of their disease [3]. These deficits, often 
emerging in early adulthood, constrain activities of daily 
living and appear to negatively affect quality-of-life [4].

MS-related symptoms such as muscle weakness, spas-
ticity, and sensory changes are highly variable across 
individuals. Symptoms can vary throughout the day due 
to fatigue, and as the disease progresses, individuals can 
experience relapses, remissions, and increasing disability 
[3, 5, 6]. The effects of MS on gait often include reduc-
tions in step length, walking speed, dynamic stability, and 
range of motion (ROM) in lower limb joints [7–10].

To address the various mobility limitations caused by 
MS, a wide range of devices are prescribed to patients. 
While severe impairments necessitate wheelchairs, 
ambulatory people with MS often use ankle–foot 
orthoses (AFOs), crutches, canes, or walkers. While 
these are helpful interventions for walking impairments, 
the variability of gait impairment amongst individuals 
with MS and the lack of evidence-based practice in pre-
scribing mobility devices to people with MS have led to 
high rates of abandonment and low satisfaction with this 
equipment [11, 12]. For instance, a common manifesta-
tion of MS is difficulty clearing the foot during the swing 
phase of gait, which is often attributed to dorsiflexion and 
eversion weakness in the ankle. AFOs are frequently pre-
scribed in this situation [13, 14]. While the literature has 
shown that AFOs can produce measurable gait improve-
ments in people recovering from stroke [15–19], the data 
regarding their effects in the context of MS is sparse and 
inconclusive [13, 20, 21]. This demonstrates the lack of 
MS-specific research into mobility interventions, and the 
need for further development of mobility-assistive tech-
nologies (MATs) for people living with neurodegenera-
tive disorders.

In recent years, research in MATs has focused on the 
development of wearable robotic exosuits and exo-
skeletons. These devices aim to augment human gait 
through the controlled actuation of motor-driven cables 
or pneumatic artificial muscles that span various joints 
in the lower limbs [22–24], or motors situated concen-
trically with joints [25, 26]. Studies have demonstrated 
that such technology can reduce muscle activation dur-
ing unloaded [23, 27–30] and loaded walking [22, 31], 
and reduce the metabolic cost of walking in both healthy 
subjects [23, 27, 32–34] and subjects with post-stroke 
hemiparesis [35, 36]. While promising, the costs, power 
demands, environmental adaptability, noisiness, and size 
of these devices are hurdles that must be overcome for 
widespread adoption of this technology [37–39].

Despite the practical barriers currently preventing 
most exosuits from reaching consumers, the research 
related to these devices has been vital to learning about 

the biomechanical effects of augmenting forces about 
the lower-limb joints. Exosuit studies have demon-
strated the virtues of carefully-timed assistive forces 
about the hip during walking [28–31, 33, 34]. Consid-
ering the crucial role that hip flexors play in the swing 
phase of gait [40, 41], the lack of clinically available 
hip-centric orthoses for mobility assistance suggests a 
need for more investigation in this area. In 2008, Sutliff 
et al. showed that a passive hip flexion-assisting ortho-
sis, consisting of a waist belt with resistive components 
that span the hip and knee joints, improved clinical gait 
assessment scores in a group of people with MS over a 
12-week period [42]. A similar passive device with elas-
tic components spanning only the hip joint produced 
significant improvements in timed 6 and 10-min walk 
tests in a group of persons exhibiting hemiparetic gait 
post-stroke [43]. More recently, Panizzolo et  al. found 
that a bilateral passive hip flexion device reduced net 
metabolic power compared to free walking in older 
healthy adults [44]. While these studies show promis-
ing results based on clinical and metabolic assessments, 
biomechanical investigations of passive hip orthoses 
that include inverse dynamics and muscle activity have 
not been published.

In this paper, we present a custom passive, lightweight, 
unilateral hip flexion orthosis (HFO), and investigate its 
biomechanical and neuromuscular effects on individu-
als with and without MS. The orthosis consists of elas-
tic bands that span the hip joint, store energy during 
hip extension in stance, and release the stored energy 
to assist flexion upon swing initiation. This exploratory 
study examined the effects of passively augmenting hip 
flexion in impaired gait, and is an important step toward 
conducting quantitative biomechanical analyses of novel 
mobility interventions for people with MS.

The aim of this study was twofold: first, to determine 
whether people with and without MS can tolerate the 
HFO in steady-state, level walking; and second, to inves-
tigate subjects’ biomechanical and neuromotor responses 
to the HFO under three different stiffness configurations. 
While we detail the effects of the device for subjects with 
and without MS, this study does not attempt to match 
these two groups. The non-MS group was the initial 
cohort to test the device, and represents a general control 
response that can be used as a basis of comparison for 
further studies involving a variety of pathologies. Testing 
with the MS group followed the successful completion 
the non-MS trials, and serves as an exploratory study of 
the effects of a novel device on people with varying levels 
of mobility impairment due to a neurological disorder.

We hypothesize that that participants’ peak hip flex-
ion angles will increase in the assisted leg while wearing 
the HFO, and that muscle activity will increase in hip 



Page 3 of 13Neuman et al. J NeuroEngineering Rehabil          (2021) 18:104  

extensors while wearing the HFO, and decrease in hip 
flexors and plantar flexors.

Materials and methods
Description of the passive unilateral hip flexion orthosis
In this study, our custom hip flexion orthosis is config-
ured for unilateral assistance. The HFO (Fig. 1) consists 
of: a nylon waist belt for proximal anchoring of resistance 
bands with a neoprene fabric base layer to interface with 
the torso; an off-the-shelf neoprene knee brace for distal 
anchoring of the exercise bands; off-the-shelf elastic sus-
penders to support the waist belt and distribute tensile 
forces about the torso; and two resistance exercise bands 
(TheraBand®) to store and release mechanical energy 
throughout the gait cycle. The total cost of fabricating the 
HFO, including custom and off-the-shelf components, 
was approximately $65.

Each resistance band is tensioned between quick-
release attachment points on the waist belt and knee 
brace, creating a passive flexion moment about the hip 
joint. The two bands are arranged antagonistically (cross-
ing over at mid-thigh) to aid rotational stability and 
maintain a low profile. The band that anchors closer to 
the navel is referred to as the “medial” band, while the 

band that anchors near the iliac crest is called the “lat-
eral” band. The locations of the waist anchors can be 
independently adjusted to meet the specific needs of the 
user.

The HFO is low-profile and it does not extend below 
the knee, allowing for simultaneous use of an AFO if 
desired. The HFO is also designed to cater to dexter-
ity limitations experienced by people with MS [3]: when 
the user assumes a sitting position, tension in the bands 
is relieved, and the quick-release attachments can be eas-
ily connected or disconnected. The waist belt is fastened 
with a simple buckle, and with the suspenders it can be 
donned and doffed much like a backpack. The knee brace 
is fastened with two hook-and-loop straps.

Off-the-shelf resistance exercise bands are used to pro-
vide the assistive moment. These bands are common-
place in physical therapy clinics, where the HFO would 
be configured by the clinician. The wide range of availa-
ble band stiffnesses provides the ability to adjust the HFO 
to an appropriate resistive force on a case-by-case basis.

Experimental design
This study was approved by the UT Dallas Institutional 
Review Board (MOD 1-CL 17-170), and participants pro-
vided written informed consent. Five volunteers with no 
mobility impairments and five volunteers with unilateral 
hip flexor weakness due to MS were recruited to wear 
the device configured in four different conditions: no 
resistive bands; nominal-stiffness bands (B1); interme-
diate-stiffness bands (B2); and high-stiffness bands (B3). 
Participant data can be found in Table 1. The MS partici-
pants were recruited from the Gait Disorder Clinic at the 
UT Southwestern School of Health Professions. Inclu-
sion criteria were a confirmed diagnosis of MS, the abil-
ity to walk at least 150 feet without physical assistance 
(with or without an AFO), unilateral hip flexor weakness 
of 2+/5 or less as determined by Manual Muscle Testing 
[45], ages 18–75 years, and body mass index less than 35. 
Volunteers were excluded if they had other neurologic 
or orthopedic diagnoses that would negatively impact 
walking. Participants were encouraged not no rely on the 
handrails of the treadmill for walking, however light use 
of the treadmill handrails was permitted. One participant 
opted to wear an AFO during the trials.

Participants had no experience using the HFO prior 
to data collection. After recording anthropometric data, 
participants were fitted with the HFO. The leg to which 
the device was fitted is referred to as the assisted leg, 
and the other the unassisted leg. Individuals with MS 
wore the device on their weaker leg, and control subjects 
wore the device on their non-dominant leg. The distance 
between the proximal and distal attachment points for 
both bands was recorded in a neutral standing position, 

Fig. 1 HFO Overview. a Waist anchors secure resistance bands to 
waist belt. Anchor locations can be individually adjusted about the 
belt. b Resistance exercise bands passively store and release energy 
during gait. c Knee brace for distal anchoring of bands. d Suspenders 
distribute load of bands about torso and help support waist belt. e 
Waist belt for proximal anchoring of bands. A soft neoprene base 
layer provides comfort, while a nylon webbing strap provides rigidity 
and connects to the waist anchors and suspenders
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and band segments were sized to a resting length of 
75% of this distance. This pre-tension value was chosen 
subjectively after preliminary tests found it to produce 
noticeable sensation in B1 without being prohibitively 
stiff in B3.

Participants with MS were allowed to self-select a com-
fortable walking pace under HFO assistance on a tread-
mill, and all controls walked at 1 m/s. We chose a fixed 
pace for the control group to allow for closer compari-
son across joint conditions of the joint angles, moment, 
and muscle activity, which are known to vary significantly 
with walking speed [46]. For participants with MS, it was 
not feasible to fix the pace given the varying functional 
abilities of the individuals in the group. When ready, tri-
als were conducted wherein the subject was recorded 
for one minute of steady-state, level walking. First, a no-
bands trial (N1) was captured for an initial baseline, fol-
lowed by the nominal (B1), intermediate (B2), and stiff 
(B3) conditions, in randomized order. Participants com-
pleted further no-bands trials (N2, N3, and N4) following 
each band condition. An example of the full randomized 
protocol for a subject would be N1-B3-N2-B1-N3-
B2-N4. Participants were allowed as much time as they 
desired to rest between trials.

Joint kinetics and kinematics
Three-dimensional kinematics were recorded by a ten-
camera motion capture system (Vicon, Oxford, UK) at 
100 Hz, and marker tracking was performed using Vicon 
Nexus. Three-dimensional ground reaction forces (GRFs) 
were recorded for each leg with an instrumented split-
belt treadmill (Bertec, Columbus, OH, USA) at 2000 Hz. 
GRF and kinematic data were low-pass filtered (4th order 
Butterworth, 10 Hz cutoff) and inverse dynamics calcula-
tions were conducted in Visual3D (C-Motion, Kingston, 
ON, CA) to estimate joint moments and powers. Time 

integrals of positive and negative joint powers were calcu-
lated in Matlab (MathWorks, Natick, MA, USA) to esti-
mate positive and negative joint work, respectively. The 
last ten good strides of each trial were used for statistical 
analysis. One control subject (C03) and one subject with 
MS (P05) were excluded from kinematic/kinetic analysis 
due to insufficient motion capture marker tracking.

Electromyography
Muscle activity was recorded at 2000  Hz with surface 
electromyography (EMG) sensors (Delsys Inc., Natick, 
MA, USA). Sensors were placed on the tibialis anterior 
(TA), gastrocnemius lateralis (GAS), soleus (SOL), rec-
tus femoris (RF), vastus lateralis (VAS), biceps femoris 
(HAM), abdominal obliques (AB), and latissimus dorsi 
(LAT). Raw EMG signals were band-pass filtered (4th 
order Butterworth, 20–450 Hz cutoff), rectified, and then 
low-pass filtered (4th order Butterworth, 6  Hz cutoff) 
to obtain a linear envelope. Envelopes were normalized 
to the average peak amplitude of strides during N1. The 
mean normalized EMG values of the last ten good strides 
from each trial were used for statistical analysis. In sev-
eral cases, EMG sensors made poor contact and were 
omitted from statistical analysis, and are left blank in the 
results.

Statistical analysis
Due to the small sample size and high variability of the 
functional levels of participants, single-subjects analy-
sis was conducted, as group-level analysis would yield 
results not representative of any particular population 
[47, 48]. One-way ANOVAs (α = 0.05) were conducted 
on each observation of interest for each leg. When signif-
icant main effects were observed, post-hoc multiple com-
parisons using the Tukey–Kramer HSD test statistic were 
performed. These comparisons include all baseline tests 

Table 1 Participant data

Subject ID Age Gender Height (m) Mass (kg) Years with MS Assisted hip flexor 
strength

Treadmill 
velocity 
(m/s)

MS1 57 F 1.64 88.5 24 2−/5 0.3

MS2 61 F 1.59 51.3 7 2−/5 0.25

MS3 45 F 1.69 56.5 24 1/5 0.2

MS4 54 F 1.6 88.2 5 2+/5 0.4

MS5 52 F 1.58 87.9 2 1+/5 0.2

C01 22 M 1.88 81.6 – – 1

C02 45 M 1.86 103.6 – – 1

C03 21 M 1.66 108 – – 1

C04 58 F 1.7 57.4 – – 1

C05 35 F 1.76 80.1 – – 1
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for completeness [49], but only the significant pairwise 
comparisons between the initial baseline (N1) and band 
(B1, B2, B3) conditions in the assisted leg are reported 
here for brevity. Full ANOVA results including effect 
sizes and results on the non-device leg are reported in 
the Additional file 1. Statistics were computed in Matlab.

Results
We present a summary of all ANOVA results in Figs. 2 
and 3. These figures indicate the significant pairwise 
results between initial baseline (N1) and subsequent 
conditions for all subjects. Rather than numerical val-
ues, we simply indicate the direction of change, if any, 

Fig. 2 Band conditions resuts overview. Peak flexion and extension angles, average positive, negative, and net work, and average muscle activity. 
Orange blocks indicate results significantly greater than N1 condition, blue blocks indicate results significantly less than N1, grey blocks represent 
no significant difference. Empty blocks are due to unusable EMG signals
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that was observed for a given subject and condition, 
to aid in identifying trends that may be present. Full 
numerical results can be viewed in Additional file 1.

Joint kinematics
Hip kinematics results are reported in Figs. 2 and 3, and 
averaged individual joint trajectories can be viewed in 

Fig. 3 Baseline conditions resuts overview. Peak flexion and extension angles, average positive, negative, and net work, and average muscle 
activity. Orange blocks indicate results significantly greater than N1 condition, blue blocks indicate results significantly less than N1, grey blocks 
represent no significant difference. Empty blocks are due to unusable EMG signals
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Fig.  4. In support of our hypothesis, all subjects with 
MS experienced a significant increase in peak hip flex-
ion angle compared to baseline when using the HFO. 

While these effects were bilateral in several cases, they 
were more pronounced in the assisted leg, particularly 
during the B1 condition. Control subjects also showed 
increases in hip flexion, though not as drastic as those 

Fig. 4 Joint Trajectories. Time-normalized joint trajectories for MS (top) and control (bottom) subjects plotted over the gait cycle for hip, knee, and 
ankle
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seen in subjects with MS, and with some band trials 
producing decreases in peak angle for C04 and C05.

Peak hip extension angles were significantly smaller 
for most MS and control subjects during HFO trials. 
Again, the greatest changes in peak angles were typically 
seen during the B1 condition. Significant results of both 
increases and decreases in hip kinematics were reported 
during subsequent baseline tests (N2, N3, N4) for both 
groups.

An increase in peak knee flexion angle was common, 
occurring for all subjects except for MS2 and C05, who 
saw decreases. These trends were observed in baseline 
and HFO trials.

Stance phase peak plantar flexion increased under at 
least one band condition for all subjects. Swing phase 
peak plantar flexion increased under at least one band 
condition for all of the MS group and decreased for C04 
and C05. Peak dorsiflexion was largely unaffected, with 
primarily decreases observed. For most subjects, ankle 
kinematics experienced significant changes in both HFO 
and baseline trials.

Joint energetics
Positive work in the assisted hip increased during HFO 
trials for most subjects (MS3 and MS4 for all HFO con-
ditions), but did not increase for these subjects during 
baseline trials (Fig. 5). Positive work in the unassisted hip 
was almost completely unaffected. Negative work in the 
assisted hip either decreased or remained the same for all 
subjects with MS and for most controls. The resulting net 
work produced by the assisted hip increased during HFO 
trials for all subjects with MS.

Work at the knee and ankle was less affected than at 
the hip, and there was no apparent trend in those results, 
with varied effects on both baseline and HFO trials.

Peak hip flexion moment on the assisted side sig-
nificantly decreased for all participants with MS dur-
ing the B1 condition compared with initial baseline. The 
unassisted side tended to increase slightly or remain 
unchanged (for unassisted side results, see Additional 
file 1). Hip extensor moments were less consistent across 
subjects, though MS1 and MS2 saw the greatest reduc-
tion in assisted-side hip extensor moments in the B1 trial.

Muscle activity
Significant results in muscle activity are reported in 
Figs. 2 and 3. We hypothesized that hip extensor (HAM) 
activity would increase, which was observed in MS2, 
MS3, MS5, C01, and C04 during HFO trials only. Mean-
while, MS1 and C03 showed decreases in HAM activity. 
We also hypothesized that hip flexor (RF) activity would 
be reduced, which was not the case with most of the col-
lected data. A small reduction to RF activity was seen in 

MS4 B1, and in all band conditions for MS1, though the 
reductions seen in MS1 were comparable to those seen in 
their baseline trials. Finally, we hypothesized that plantar 
flexor (GAS, SOL) muscle activity would be reduced by 
the HFO. For GAS, only MS4 showed reductions in mus-
cle activity exclusively during HFO trials (B1, B2). For 
SOL, results were similarly mixed, and no clear trends 
were observed.

Discussion
HFO efficacy
The primary purpose of this study was to evaluate the 
efficacy of a novel hip flexion orthosis worn by people 
with and without MS. All participants were able to com-
plete trials for all conditions. The HFO was adjusted 
to successfully fit a wide range of body sizes, and was 
well-tolerated by all participants. The benefits of a low-
profile, discrete device should not be overlooked; device 
abandonment due to non-acceptance by the user is com-
mon [50], and a lower profile device might not interfere 
as much with activities of daily living. Furthermore, the 
inexpensive materials with which the device was built 
would make it highly accessible to those in search of a 
walking aid, and easy to maintain given the availability of 
off-the shelf exercise bands.

Biomechanical results
Our hypothesis that hip kinematics in the assisted leg 
would shift towards flexion was largely supported by 
subjects with MS and several controls, particularly in the 
B1 condition. This change opposes the shift toward hip 
extension during swing that has been observed in peo-
ple with MS [7]. These effects were more pronounced 
for subjects with MS, indicating that the HFO was able 
to “target” the pathological gait patterns exhibited in this 
group. While changes in kinematics do not necessarily 
reflect changes in energetics [51], the shift to greater hip 
flexion suggests an increase in foot clearance and lower 
risk of toe-drag. To highlight this shift toward normative 
kinematics, an inter-limb comparison of peak hip flexion 
angle for subjects with MS is given in Fig. 6. The B1 con-
dition resulted in the lowest inter-limb hip angle asym-
metry for all but MS3, and was lower than all baseline 
trials for subjects with MS.

The HFO demonstrated a contribution to positive 
work at the hip during swing by assisting concentric 
contraction (Fig.  5). During stance, it contributed to 
negative work at the hip by opposing extension. It has 
been shown that human locomotion requires a net 
positive amount of work, and that in unimpaired level 
walking, positive work done by the hip is substantially 
greater than negative work [52]. In this study, all sub-
jects with MS showed the opposite condition, with 
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Fig. 5 Hip Energetics. Hip power curves over gait cycle and corresponding positive, negative, and net work results for MS group (top) and controls 
group (bottom)
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negative work exceeding positive work at the hip. While 
wearing the HFO, however, the net work at the hip was 
more positive than in no-device trials in nearly every 
case. In the most extreme case (MS4 B2), we observed 
a shift to net positive work. These findings suggest that 
the redistribution of mechanical energy by the HFO 
improved walking for people with MS.

Our hypotheses that hip extensor muscle activity 
would increase and hip flexor and plantar flexor activ-
ity would decrease were not widely supported by the 
data collected. A major factor in the variability of the 
muscle activity data was the limited amount of strides 
analyzed during the relatively short periods of time that 
data was collected. Furthermore, MS causes the mus-
cles to fatigue quickly, which has a substantial impact 

on the content of the EMG. Despite limitations, there 
was a significant increase in HAM activity compared 
with initial baseline for five of the subjects, including 
three from the MS group, however MS1 and C03 both 
saw decreases in HAM activity across conditions.

Device configuration
The variability seen in neuromuscular responses, 
including several instances of subjects showing oppo-
site responses to the same conditions, emphasizes the 
need for highly customizable assistive devices for peo-
ple with MS. The members of the MS group in this 
study demonstrated a wide range of functional ability, 
but all wore the device in the same three configurations 
for experimental control. The HFO can be configured 
in numerous ways, and a customized approach with a 
clinician would be more appropriate to tailor the setup 
to the needs of a given individual.

Even with such variability, a consistent result was 
that the B1 condition tended to produce more pro-
nounced effects than the B2 or B3 conditions. This is 
a particularly noteworthy finding, because B1 had the 
lowest stiffness of the bands tested, thereby introduc-
ing the smallest external loading. This trend was not 
due to the stiffer bands restricting range of motion at 
the hip, as the range of hip motion was generally con-
sistent across trials. This suggests that there is an upper 
limit on device effectiveness as band stiffness increases, 
and presents the need for exploration of lower-stiff-
ness bands in future studies. It has been shown that 
there are diminishing returns with increased assistance 
magnitude for a powered hip exoskeleton [53], as well 
as with assistance onset timing for the same exoskel-
eton [33]. A similar phenomenon may be observed in 
the HFO, because both the magnitude and timing of 
its energy delivery are a function of the device con-
figuration. Quantifying these parameters is not trivial: 
band stiffness, pre-tension, anchoring locations, user 
anthropometrics, device deformation, and individual 
gait characteristics all play a role in determining their 
values. Further exploration is required to determine the 
optimal energy storage characteristics for the passive 
elements in the HFO, and how to best assess individual 
needs when setting up the device.

The results of the present study demonstrate that 
an inexpensive and mechanically passive orthosis can 
produce significant effects on leg joint kinematics and 
energetics, and specifically in people with MS. The 
changes observed in participants with MS trended 
toward more normative gait kinematics, suggesting 
the device helped restore some functionality for these 
individuals.

Fig. 6 Inter-limb peak hip flexion comparison. Difference in degrees 
between the unassisted and assisted leg peak hip flexion angle across 
all trials for MS group. Bars indicate pairwise significant difference 
from N1 trial
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Subsequent baseline trials
The N2, N3, and N4 trials were included to provide a 
baseline between the tests of the three different band 
stiffnesses, and to monitor the progression of the base-
line condition. Inclusion of these trials showed that 
the initial baseline is subject to change substantially 
between device trials. Significant changes in subse-
quent baseline trials could be the result of acclimation 
to the task, or to carried-over effects of the device itself. 
In a longer-term study with fewer variables, inclusion 
of these baseline trials could help understand whether 
the device promotes motor learning in users, poten-
tially providing rehabilitative benefits.

Limitations
The outcomes of this experiment are subject to several 
limitations. Small sample size and single testing ses-
sion impacts the generalization of these findings. While 
controlling band stiffness and pre-tension across sub-
jects was part of the design, it meant that individuals 
were not afforded the opportunity to acclimate to the 
HFO and make individualized adjustments as needed. 
Use of the treadmill versus overground walking may 
have altered the participants’ normal gait characteris-
tics slightly. Treadmill speed was also held constant, so 
we could not observe the effects on preferred walking 
speed within subjects. The use of surface EMG sensors 
meant that muscle activity could not be measured in 
the iliopsoas, the strongest hip flexor. The highly varia-
ble population of subjects prevented meaningful group-
level analysis.

Conclusions
This study presented a soft, passive, unilateral hip flex-
ion orthosis that was well-tolerated by healthy adults 
and adults with MS under three levels of compliance. 
For subjects with MS, all device trials showed a statisti-
cally significant increase in the peak hip flexion angle 
of the assisted leg. Net work at the hip was more posi-
tive in people with MS when wearing the HFO. Mus-
cle activity responses were highly varied, emphasizing 
the need for case-by-case adjustments to the device 
configuration. This study demonstrates the efficacy 
of the HFO as a mobility-assisting device for people 
with MS, and motivates the need for further investiga-
tion into the effects altering various parameters of the 
device. More generally, it demonstrates that passive 
devices can significantly affect walking mechanics, and 
that patient populations could benefit from redistribu-
tion, rather than addition, of mechanical energy from a 
wearable device.
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